Slip resistance is determined by the kinetic and dynamic conditions of motion of the body interacting with the surface. When it comes to flooring, it is obvious how the degree of slip is related to the safety of using the surface. Knowledge of surface properties is essential for the cladding designer, tiler, retailer and end user, as well as the safety inspector. Please mark the correct conclusions in your opinion:
According to the DIN 51130 method, floors in production facilities or work areas where there is a high risk of slipping are classified into the following groups (according to the average inclination angle): NC; R9; R10; R11; R12; R13. Where R13 is the slipperiest tile.
Ceramic tiles, characterized by their smoothness and shine, form the most intimate contact between the surface and the sole, thereby increasing the coefficient of friction. While rough, uneven surfaces tend to allow water or other liquids to accumulate on them, as well as dirt, grease and other substances that act as lubricants. In addition, the area of contact with the sole, in this case, is limited by the protruding edges of the surface, which also reduces slip resistance. This factor must be taken into account when choosing tiles.
The DIN 51130 and DIN 51097 methods, also called "incline plane methods", consist of a person walking back and forth on a platform covered with the tiles being tested. The inclination of the test section increases at a constant rate until an angle is reached at which the person begins to feel unsure when walking, that is, begins to slide.
Friction coefficient is a parameter characterizing the degree of surface sliding. It is proportional to the force parallel to the interaction surface that must be applied in order to create relative motion between two bodies. The higher its characteristics such as smoothness and shine, the lower the coefficient of friction for floor surfaces, since this contributes to the appearance of a thin, continuous layer of water (as well as grease, dirt, etc.), which acts as a lubricant between the sole and the floor. Ceramic tiles, while smooth and shiny, create a slippery surface and increase the risk of falls and accidents.
According to the DIN 51097 method, in rooms where floors are often wet and where people walk on them barefoot (for example, swimming pool sides, children's pools, common shower rooms, saunas, etc.), the classification contains groups: A; B (A+B); C (A+B+C). Where A is the slipperiest tile.
Material on this issue is presented in the article Slip resistance on dry and wet surfaces .
The quality and value of the cladding directly depend on the symmetry and uniformity of its individual components, i.e. individual tiles in relation to the quality of the surface and its dimensions. That is why, any dimensional differences and asymmetries of the tiles, deviations of the surface from flatness, which violate the harmony of the cladding and worsen its appearance, will be considered defects. The quality of the surface is determined by the presence of the following defects: gaps, cracks, lack of glaze, unevenness, depressions, pits, damage to the vitrified surface, specks and stains, body defects, decorative defects, darkening, chipped edges and corners.
The appearance characteristics, as well as the dimensional characteristics, are checked randomly on the tiles before they are packaged. Control is carried out visually by specially trained personnel (MANUAL SORTING) or by machine (AUTOMATIC SORTING).
The following type characteristics are important: length of the sides and thickness, straightness of the sides, orthogonality, flatness of the surface.
If defective tiles do not exceed 5%, then the batch is assigned FIRST GRADE, and if they exceed 5%, then the batch is assigned SECOND GRADE.
The method for controlling size and appearance characteristics is described in EN ISO 10545-2. To control the appearance, a minimum of 30 samples of tiles are selected, which must form a surface area of at least 1 m². The appearance of the tiles is checked visually (with the naked eye) at an illumination of 300 lux from a distance of 1 m from the observer’s eyes. According to the standard, preparation of the sample surface and visual assessment of the surface are carried out by different persons. Surface quality is expressed as a percentage of the number of tiles without defects.
The difference in size and dimensional deviations are expressed as a percentage of the working size of the tile.
Information on this issue is presented in the article Dimensional and type characteristics .
Thermal resistance is the ability of ceramic tiles to withstand without damage the stress caused by dimensional deformations due to sudden changes in temperature, especially if such changes are repeated frequently. Which statements do you think are correct?
If we compare the thermal resistance testing methods of the EN ISO 10545-9 standard and GOST 27180-2001, we can conclude that the test requirements of the EN ISO 10545-9 standard are somewhat stricter than the requirements of GOST 27180-2001.
Thermal resistance is the ability of a material to resist the transfer of energy (heat exchange) from more heated parts of the body to less heated bodies, carried out by chaotically moving body particles (atoms, molecules, electrons, etc.).
“Resistance to thermal shock” is a property characteristic only of refractory materials, the scope of which is the metallurgical, glass, chemical industries, as well as all other industries where work takes place using blast furnaces, shaft and rotary furnaces.
The test method described in GOST 27180-2001 is as follows: samples are subjected to 10 rapid cycles of temperature changes from 15 °C to 145 °C. The maximum temperature is achieved by placing the samples in an oven for at least 20 minutes, the minimum by completely immersing them in water at a temperature of 15°C. At the end of 10 cycles, samples are inspected for visible defects.
Thermal resistance is an important physical property of ceramic tiles. Let's imagine, for example, the tiled surface of a kitchen countertop on which a hot pan is placed. The surface of the tile heats up sharply and, as a result, expands, and the lower layers become colder and less expanded as they move away from it. In this state of thermal inhomogeneity, the tile, which does not have the property of heat resistance, could be deformed and, being an inherently rigid material, could crack.
Material on this issue is presented in the article Thermal resistance .
Linear thermal expansion is expressed by dimensional changes in any material, including ceramics, due to changes in temperature. Almost all known materials expand as temperature increases and contract as temperature decreases. Moisture expansion refers to the expansion of the tile due to the absorption of moisture. The consequences of such swelling are similar to the expansion of tiles due to an increase in temperature (linear thermal expansion) and are due to the porous structure of the material.
The thermal coefficient of linear expansion α for ceramic tiles is calculated with an accuracy of 0.1•10 -6 °C -1 using the formula: α = dL/(L 0 •dT), where L 0 is the length of the test sample at room temperature; dL is the linear expansion of the test sample during the period of temperature change from room temperature to 100 °C; dT – temperature increase.
A moisture expansion test is required for tiles with a water absorption value greater than 6%.
The coefficient of thermal expansion for floor and wall ceramic tiles varies from 4.1•10 -6 °C -1 to 8.1•10 -6 °C -1 . This means that elongation ranges from 40 to 80 thousandths of a millimeter per meter of ceramic tile and per degree rise in temperature.
The recommended upper limit for moisture expansion of ceramic tiles and slabs is 0.06% when testing according to ISO 10545-10 is applied. This means that the upper limit of moisture expansion of ceramic tiles and slabs should not exceed 6 mm/m.
Methods for determining moisture expansion and temperature coefficient of linear expansion are given in the standards EN ISO 10545-10 and EN ISO 10545-8, respectively.
Material on this issue is presented in the article Linear thermal expansion and moisture expansion .
The term craquelure itself refers to the crevices and cracks that form on the surface of the glaze. The pattern of these cracks is often circular, although they may be scattered across the surface of the glaze. The reason for the appearance of craquelure is either a difference in the coefficient of thermal expansion of the shard and the glaze, or deformation of the tile due to the impact of mechanical load on it.
“Late craquelure” occurs under the influence of the external environment during operation. The reasons for its appearance are: thermal shock, insufficient drying of the cement base, excessive cement content in the layer, excessive thickness of the mortar layer.
Glazed tiles with an "immediate crackle effect" are not considered defective, although manufacturers sometimes deliberately create collections of tiles with a "craquelure effect" for aesthetic purposes.
This defect can appear immediately after the end of the production cycle (in this case they speak of “immediate craquelure”) or some time after laying the tiles (in this case they speak of “late craquelure”).
When craquelure appears on polished ceramic tiles and slabs, the term "polished craquelure" is used.
The test method for determining the resistance to cracking of glazes (craquelure) of ceramic tiles and slabs is given in the EN ISO 10545-18 standard. To determine the resistance to cracking of glazes, tiles and slabs are subjected to high pressure steam in an autoclave. Then the tiles and slabs, after applying the dye to the glazed surfaces, are examined for the presence of cracks in the glaze.
The material on this issue is presented in the article “ Resistance to craquelure ” and “ Cracking of craquelure glaze ”.