Specifications

The result obtained indicates a large number of incorrectly answered questions. Read recommended articles on these issues.
You scored 0 out of 5 possible points.
Your result: 0%
Question 1

Thermal conductivity is the ability of material bodies to transfer energy (heat exchange) from more heated parts of the body to less heated parts of the body, carried out by chaotically moving particles of the body (atoms, molecules, electrons, etc.). Such heat exchange can occur in any body with a non-uniform temperature distribution, but the mechanism of heat transfer will depend on the state of aggregation of the substance. Porcelain stoneware, due to its dense, almost non-porous structure, is distinguished by relatively high thermal conductivity.

Score: 0 out of 1
Your AnswerOptionRight?Result

Porcelain stoneware, due to its dense, almost non-porous structure, has a relatively high thermal conductivity, which is higher than that of some other flooring materials (for example, natural stones such as marble or granite).

0

The method for determining the thermal conductivity of ceramic tiles is given in ISO 10545-03. The essence of the method is that in steady state, the energy flux density transmitted through thermal conductivity is proportional to the temperature gradient.

0

The thermal conductivity of the flooring material becomes particularly important when the choice is made in favor of heated floors (warm screed). Here, naturally, porcelain stoneware with its high thermal conductivity has no competitors.

0

The SI unit for thermal conductivity is W/(m K).

0

The thermal conductivity of ceramic tiles usually varies from 0.5 to 1.1 W/(m °C); lower values ​​apply to porous materials (single and double fired tiles, monoporosity).

0

The thermal conductivity of ceramic tiles usually varies from 0.5 to 0.9 kcal/(m h °C); lower values ​​apply to porous materials (single and double fired tiles, monoporosity).

0

Information on this issue is presented in the article Thermal conductivity .

Question 2

Thermal resistance is the ability of ceramic tiles to withstand without damage the stress caused by dimensional deformations due to sudden changes in temperature, especially if such changes are repeated frequently. Which statements do you think are correct?

Score: 0 out of 1
Your AnswerOptionRight?Result

Thermal resistance is an important physical property of ceramic tiles. Let's imagine, for example, the tiled surface of a kitchen countertop on which a hot pan is placed. The surface of the tile heats up sharply and, as a result, expands, and the lower layers become colder and less expanded as they move away from it. In this state of thermal inhomogeneity, the tile, which does not have the property of heat resistance, could be deformed and, being an inherently rigid material, could crack.

0

Thermal resistance is the ability of a material to resist the transfer of energy (heat exchange) from more heated parts of the body to less heated bodies, carried out by chaotically moving body particles (atoms, molecules, electrons, etc.).

0

“Resistance to thermal shock” is a property characteristic only of refractory materials, the scope of which is the metallurgical, glass, chemical industries, as well as all other industries where work takes place using blast furnaces, shaft and rotary furnaces.

0

The test method described in GOST 27180-2001 is as follows: samples are subjected to 10 rapid cycles of temperature changes from 15 °C to 145 °C. The maximum temperature is achieved by placing the samples in an oven for at least 20 minutes, the minimum by completely immersing them in water at a temperature of 15°C. At the end of 10 cycles, samples are inspected for visible defects.

0

If we compare the thermal resistance testing methods of the EN ISO 10545-9 standard and GOST 27180-2001, we can conclude that the test requirements of the EN ISO 10545-9 standard are somewhat stricter than the requirements of GOST 27180-2001.

0

Material on this issue is presented in the article Thermal resistance .

Question 3

Linear thermal expansion is expressed by dimensional changes in any material, including ceramics, due to changes in temperature. Almost all known materials expand as temperature increases and contract as temperature decreases. Moisture expansion refers to the expansion of the tile due to the absorption of moisture. The consequences of such swelling are similar to the expansion of tiles due to an increase in temperature (linear thermal expansion) and are due to the porous structure of the material.

Score: 0 out of 1
Your AnswerOptionRight?Result

The recommended upper limit for moisture expansion of ceramic tiles and slabs is 0.06% when testing according to ISO 10545-10 is applied. This means that the upper limit of moisture expansion of ceramic tiles and slabs should not exceed 6 mm/m.

0

The thermal coefficient of linear expansion α for ceramic tiles is calculated with an accuracy of 0.1•10 -6 °C -1 using the formula: α = dL/(L 0 •dT), where L 0 is the length of the test sample at room temperature; dL is the linear expansion of the test sample during the period of temperature change from room temperature to 100 °C; dT – temperature increase.

0

The coefficient of thermal expansion for floor and wall ceramic tiles varies from 4.1•10 -6 °C -1 to 8.1•10 -6 °C -1 . This means that elongation ranges from 40 to 80 thousandths of a millimeter per meter of ceramic tile and per degree rise in temperature.

0

Methods for determining moisture expansion and temperature coefficient of linear expansion are given in the standards EN ISO 10545-10 and EN ISO 10545-8, respectively.

0

A moisture expansion test is required for tiles with a water absorption value greater than 6%.

0

Material on this issue is presented in the article Linear thermal expansion and moisture expansion .

Question 4

The surface hardness of ceramic tiles is the ability of the cladding surface to withstand the mechanical stress of other materials. For ceramic facing materials or natural stones, this property is usually indicated in accordance with the mineralogical scale of hardness, the so-called Mohs scale, named after the German mineralogist Friedrich Mohs, who proposed his test method in 1811. Please indicate the correct statements in your opinion.

Score: 0 out of 1
Your AnswerOptionRight?Result

The Mohs scale (mineralogical hardness scale) is a set of reference minerals for determining relative hardness using the scratching method. 10 minerals, arranged in order of increasing hardness, were taken as standards.

0

Mohs scale - determined by which of ten standard minerals scratches the material being tested, and which of ten standard minerals scratches the material being tested.

0

The Mohs scale is a method of rough comparative assessment of the hardness of materials according to the “harder - softer” system, where the material being tested is scratched by a reference mineral and its surface hardness on the Mohs scale is lower, or it is scratched by a reference mineral and its hardness is higher. Thus, the values ​​of the Mohs scale can be considered indicators of the absolute hardness of minerals.

0

Unglazed ceramic tiles are relatively hard, and scratches only affect the aesthetic properties of the cladding, without damaging its functional qualities.

0

Glazed ceramic tiles are relatively hard, and scratches affect the aesthetic properties of the cladding, while also damaging its functional qualities.

0

Material on this issue is presented in the article Surface hardness .

Question 5

The term craquelure itself refers to the crevices and cracks that form on the surface of the glaze. The pattern of these cracks is often circular, although they may be scattered across the surface of the glaze. The reason for the appearance of craquelure is either a difference in the coefficient of thermal expansion of the shard and the glaze, or deformation of the tile due to the impact of mechanical load on it.

Score: 0 out of 1
Your AnswerOptionRight?Result

This defect can appear immediately after the end of the production cycle (in this case they speak of “immediate craquelure”) or some time after laying the tiles (in this case they speak of “late craquelure”).

0

The test method for determining the resistance to cracking of glazes (craquelure) of ceramic tiles and slabs is given in the EN ISO 10545-18 standard. To determine the resistance to cracking of glazes, tiles and slabs are subjected to high pressure steam in an autoclave. Then the tiles and slabs, after applying the dye to the glazed surfaces, are examined for the presence of cracks in the glaze.

0

Glazed tiles with an "immediate crackle effect" are not considered defective, although manufacturers sometimes deliberately create collections of tiles with a "craquelure effect" for aesthetic purposes.

0

When craquelure appears on polished ceramic tiles and slabs, the term "polished craquelure" is used.

0

“Late craquelure” occurs under the influence of the external environment during operation. The reasons for its appearance are: thermal shock, insufficient drying of the cement base, excessive cement content in the layer, excessive thickness of the mortar layer.

0

The material on this issue is presented in the article “ Resistance to craquelure ” and “ Cracking of craquelure glaze ”.

For any suggestions regarding the site: [email protected]
Для любых предложений по сайту: [email protected]