Specifications

The result obtained indicates a large number of incorrectly answered questions. Read recommended articles on these issues.
You scored 0 out of 5 possible points.
Your result: 0%
Question 1

Slip resistance is determined by the kinetic and dynamic conditions of motion of the body interacting with the surface. When it comes to flooring, it is obvious how the degree of slip is related to the safety of using the surface. Knowledge of surface properties is essential for the cladding designer, tiler, retailer and end user, as well as the safety inspector. Please mark the correct conclusions in your opinion:

Score: 0 out of 1
Your AnswerOptionRight?Result

Ceramic tiles, characterized by their smoothness and shine, form the most intimate contact between the surface and the sole, thereby increasing the coefficient of friction. While rough, uneven surfaces tend to allow water or other liquids to accumulate on them, as well as dirt, grease and other substances that act as lubricants. In addition, the area of ​​contact with the sole, in this case, is limited by the protruding edges of the surface, which also reduces slip resistance. This factor must be taken into account when choosing tiles.

0

The DIN 51130 and DIN 51097 methods, also called "incline plane methods", consist of a person walking back and forth on a platform covered with the tiles being tested. The inclination of the test section increases at a constant rate until an angle is reached at which the person begins to feel unsure when walking, that is, begins to slide.

0

According to the DIN 51130 method, floors in production facilities or work areas where there is a high risk of slipping are classified into the following groups (according to the average inclination angle): NC; R9; R10; R11; R12; R13. Where R13 is the slipperiest tile.

0

Friction coefficient is a parameter characterizing the degree of surface sliding. It is proportional to the force parallel to the interaction surface that must be applied in order to create relative motion between two bodies. The higher its characteristics such as smoothness and shine, the lower the coefficient of friction for floor surfaces, since this contributes to the appearance of a thin, continuous layer of water (as well as grease, dirt, etc.), which acts as a lubricant between the sole and the floor. Ceramic tiles, while smooth and shiny, create a slippery surface and increase the risk of falls and accidents.

0
Selected

According to the DIN 51097 method, in rooms where floors are often wet and where people walk on them barefoot (for example, swimming pool sides, children's pools, common shower rooms, saunas, etc.), the classification contains groups: A; B (A+B); C (A+B+C). Where A is the slipperiest tile.

Correct
1

Material on this issue is presented in the article Slip resistance on dry and wet surfaces .

Question 2

Linear thermal expansion is expressed by dimensional changes in any material, including ceramics, due to changes in temperature. Almost all known materials expand as temperature increases and contract as temperature decreases. Moisture expansion refers to the expansion of the tile due to the absorption of moisture. The consequences of such swelling are similar to the expansion of tiles due to an increase in temperature (linear thermal expansion) and are due to the porous structure of the material.

Score: 0 out of 1
Your AnswerOptionRight?Result

A moisture expansion test is required for tiles with a water absorption value greater than 6%.

0
Selected

The coefficient of thermal expansion for floor and wall ceramic tiles varies from 4.1•10 -6 °C -1 to 8.1•10 -6 °C -1 . This means that elongation ranges from 40 to 80 thousandths of a millimeter per meter of ceramic tile and per degree rise in temperature.

Incorrect
-1

Methods for determining moisture expansion and temperature coefficient of linear expansion are given in the standards EN ISO 10545-10 and EN ISO 10545-8, respectively.

0

The recommended upper limit for moisture expansion of ceramic tiles and slabs is 0.06% when testing according to ISO 10545-10 is applied. This means that the upper limit of moisture expansion of ceramic tiles and slabs should not exceed 6 mm/m.

0

The thermal coefficient of linear expansion α for ceramic tiles is calculated with an accuracy of 0.1•10 -6 °C -1 using the formula: α = dL/(L 0 •dT), where L 0 is the length of the test sample at room temperature; dL is the linear expansion of the test sample during the period of temperature change from room temperature to 100 °C; dT – temperature increase.

0

Material on this issue is presented in the article Linear thermal expansion and moisture expansion .

Question 3

Frost resistance - the ability of ceramic tiles to withstand freezing in a humid environment and at temperatures below 0 degrees Celsius. The freezing mechanism is divided into two stages. The first stage is the penetration of water from the environment into the pores of the tile. The second stage is the hardening (freezing) of water inside the pores. As is known, the transition of water from a liquid to a solid state is accompanied by an increase in volume, since the density of ice is less than the density of water. Thus, when water freezes inside the pores, the tile is subjected to mechanical stress, which can lead to cracks or chipping of part of the material.

Score: 0 out of 1
Your AnswerOptionRight?Result

Based on the mechanisms described above, the frost resistance of a material is determined by two parameters:
1) The presence and number of pores that allow water to penetrate into the material;
2) The shape and size of the pores, the volume of voids of which, allows you to distribute the loads of the changing state of water.
It follows from this that frost resistance is directly related to water absorption: the lower the water absorption, the greater the likelihood that the material is frost-resistant. However, there are also highly porous materials (with a high rate of water absorption) that are characterized by frost resistance. Frost resistance in this case is due to the shape and size of the pores, allowing moisture to penetrate into the material without destroying it as a result of hydrothermal loads.

0

Based on the mechanisms described above, the frost resistance of a material is determined by the possibility of water penetration into the material, in other words, the degree of water absorption. Thus, if a material does not absorb water, it is frost-resistant, but if it does, it is not.

0
Selected

According to EN ISO 10545-12:1997, tests confirming frost resistance properties are not carried out as such. A material is considered frost-resistant if it falls into group 1 of materials according to the degree of water absorption (<3%).

Incorrect
-1

The frost resistance property of ceramic tiles is not guaranteed in extremely low temperature zones (below -40 °C). This is due to the test conditions of EN ISO 10545-12:1997, as they are carried out at temperatures between +5°C and -5°C. In this regard, manufacturers mark materials suitable for use in such an environment with a special EXTRA°C sign, which in turn indicates testing in the temperature range from -50 °C to +100 °C.

0

Frost resistance also prevents ice from forming on the face of the tile. This is due to the fact that water, without getting inside the material through the pores of the top layer, seems to “roll off” from the surface.

0

According to EN ISO 10545-12:1997, tests confirming frost resistance properties are carried out as follows: ceramic tiles or slabs, after being saturated with water, are subjected to alternate temperatures of +5 ° C and minus 5 ° C. They are then completely frozen for at least 100 freeze-thaw cycles. After 100 freeze/thaw cycles, the faces and edges of ceramic tiles or slabs are examined for damage.

0

Material on this issue is presented in the article Frost resistance .

Question 4

The term craquelure itself refers to the crevices and cracks that form on the surface of the glaze. The pattern of these cracks is often circular, although they may be scattered across the surface of the glaze. The reason for the appearance of craquelure is either a difference in the coefficient of thermal expansion of the shard and the glaze, or deformation of the tile due to the impact of mechanical load on it.

Score: 0 out of 1
Your AnswerOptionRight?Result

When craquelure appears on polished ceramic tiles and slabs, the term "polished craquelure" is used.

0

This defect can appear immediately after the end of the production cycle (in this case they speak of “immediate craquelure”) or some time after laying the tiles (in this case they speak of “late craquelure”).

0

“Late craquelure” occurs under the influence of the external environment during operation. The reasons for its appearance are: thermal shock, insufficient drying of the cement base, excessive cement content in the layer, excessive thickness of the mortar layer.

0

The test method for determining the resistance to cracking of glazes (craquelure) of ceramic tiles and slabs is given in the EN ISO 10545-18 standard. To determine the resistance to cracking of glazes, tiles and slabs are subjected to high pressure steam in an autoclave. Then the tiles and slabs, after applying the dye to the glazed surfaces, are examined for the presence of cracks in the glaze.

0
Selected

Glazed tiles with an "immediate crackle effect" are not considered defective, although manufacturers sometimes deliberately create collections of tiles with a "craquelure effect" for aesthetic purposes.

Incorrect
-1

The material on this issue is presented in the article “ Resistance to craquelure ” and “ Cracking of craquelure glaze ”.

Question 5

The quality and value of the cladding directly depend on the symmetry and uniformity of its individual components, i.e. individual tiles in relation to the quality of the surface and its dimensions. That is why, any dimensional differences and asymmetries of the tiles, deviations of the surface from flatness, which violate the harmony of the cladding and worsen its appearance, will be considered defects. The quality of the surface is determined by the presence of the following defects: gaps, cracks, lack of glaze, unevenness, depressions, pits, damage to the vitrified surface, specks and stains, body defects, decorative defects, darkening, chipped edges and corners.

Score: 0 out of 1
Your AnswerOptionRight?Result

The difference in size and dimensional deviations are expressed as a percentage of the working size of the tile.

0

The method for controlling size and appearance characteristics is described in EN ISO 10545-2. To control the appearance, a minimum of 30 samples of tiles are selected, which must form a surface area of ​​at least 1 m². The appearance of the tiles is checked visually (with the naked eye) at an illumination of 300 lux from a distance of 1 m from the observer’s eyes. According to the standard, preparation of the sample surface and visual assessment of the surface are carried out by different persons. Surface quality is expressed as a percentage of the number of tiles without defects.

0

If defective tiles do not exceed 5%, then the batch is assigned FIRST GRADE, and if they exceed 5%, then the batch is assigned SECOND GRADE.

0

The following type characteristics are important: length of the sides and thickness, straightness of the sides, orthogonality, flatness of the surface.

0

The appearance characteristics, as well as the dimensional characteristics, are checked randomly on the tiles before they are packaged. Control is carried out visually by specially trained personnel (MANUAL SORTING) or by machine (AUTOMATIC SORTING).

0

Information on this issue is presented in the article Dimensional and type characteristics .

For any suggestions regarding the site: [email protected]
Для любых предложений по сайту: [email protected]