Abrasion resistance is a mechanical characteristic of a lined surface. Indicates the surface’s resistance to wear due to exposure to rubbing objects, surfaces, and materials. Which expressions do you think are correct?
The wear resistance requirements for unglazed ceramic tiles and slabs are set by EN 14411 and depend on water absorption and the method of their manufacture.
According to the test method EN ISO 10545-7:1998, glazed tiles are divided into wear resistance classes, from "0" to "5". Where fifth class tiles are least resistant to abrasion.
The important point is that unlike other quality tests on tiles, durability testing does not determine the value of the tile. The results of the study divide the tiles into classes, each of which corresponds to a specific purpose of the tile, and in no way to divide the tiles into “bad” and “good”.
Abrasion resistance is a property characteristic only of glazed ceramic tiles. Since intense and prolonged exposure to the surface over time can lead to partial loss of the glazed layer, and this, in turn, will lead to exposure of the ceramic mass and, as a consequence, to the loss of not only the aesthetic, but also the functional qualities of the facing surface. Damage to unglazed tiles is almost invisible, since abrasion of the top layer leads to exposure of the ceramic mass, which in unglazed tiles is no different from the top layer.
Abrasion resistance also affects other functional characteristics of the ceramic tile surface, such as chemical and stain resistance and ease of maintenance. Naturally, this aspect is equally important for glazed and unglazed tiles, because... abrasion leads to a weakening of the tile structure itself, the appearance of pores and microcracks invisible to the naked eye, into which dirt, etc. gets clogged.
Information on this issue is presented in the article Abrasion resistance, wear resistance .
Thermal resistance is the ability of ceramic tiles to withstand without damage the stress caused by dimensional deformations due to sudden changes in temperature, especially if such changes are repeated frequently. Which statements do you think are correct?
If we compare the thermal resistance testing methods of the EN ISO 10545-9 standard and GOST 27180-2001, we can conclude that the test requirements of the EN ISO 10545-9 standard are somewhat stricter than the requirements of GOST 27180-2001.
Thermal resistance is the ability of a material to resist the transfer of energy (heat exchange) from more heated parts of the body to less heated bodies, carried out by chaotically moving body particles (atoms, molecules, electrons, etc.).
Thermal resistance is an important physical property of ceramic tiles. Let's imagine, for example, the tiled surface of a kitchen countertop on which a hot pan is placed. The surface of the tile heats up sharply and, as a result, expands, and the lower layers become colder and less expanded as they move away from it. In this state of thermal inhomogeneity, the tile, which does not have the property of heat resistance, could be deformed and, being an inherently rigid material, could crack.
“Resistance to thermal shock” is a property characteristic only of refractory materials, the scope of which is the metallurgical, glass, chemical industries, as well as all other industries where work takes place using blast furnaces, shaft and rotary furnaces.
The test method described in GOST 27180-2001 is as follows: samples are subjected to 10 rapid cycles of temperature changes from 15 °C to 145 °C. The maximum temperature is achieved by placing the samples in an oven for at least 20 minutes, the minimum by completely immersing them in water at a temperature of 15°C. At the end of 10 cycles, samples are inspected for visible defects.
Material on this issue is presented in the article Thermal resistance .
Linear thermal expansion is expressed by dimensional changes in any material, including ceramics, due to changes in temperature. Almost all known materials expand as temperature increases and contract as temperature decreases. Moisture expansion refers to the expansion of the tile due to the absorption of moisture. The consequences of such swelling are similar to the expansion of tiles due to an increase in temperature (linear thermal expansion) and are due to the porous structure of the material.
The coefficient of thermal expansion for floor and wall ceramic tiles varies from 4.1•10 -6 °C -1 to 8.1•10 -6 °C -1 . This means that elongation ranges from 40 to 80 thousandths of a millimeter per meter of ceramic tile and per degree rise in temperature.
A moisture expansion test is required for tiles with a water absorption value greater than 6%.
The recommended upper limit for moisture expansion of ceramic tiles and slabs is 0.06% when testing according to ISO 10545-10 is applied. This means that the upper limit of moisture expansion of ceramic tiles and slabs should not exceed 6 mm/m.
The thermal coefficient of linear expansion α for ceramic tiles is calculated with an accuracy of 0.1•10 -6 °C -1 using the formula: α = dL/(L 0 •dT), where L 0 is the length of the test sample at room temperature; dL is the linear expansion of the test sample during the period of temperature change from room temperature to 100 °C; dT – temperature increase.
Methods for determining moisture expansion and temperature coefficient of linear expansion are given in the standards EN ISO 10545-10 and EN ISO 10545-8, respectively.
Material on this issue is presented in the article Linear thermal expansion and moisture expansion .
The term craquelure itself refers to the crevices and cracks that form on the surface of the glaze. The pattern of these cracks is often circular, although they may be scattered across the surface of the glaze. The reason for the appearance of craquelure is either a difference in the coefficient of thermal expansion of the shard and the glaze, or deformation of the tile due to the impact of mechanical load on it.
The test method for determining the resistance to cracking of glazes (craquelure) of ceramic tiles and slabs is given in the EN ISO 10545-18 standard. To determine the resistance to cracking of glazes, tiles and slabs are subjected to high pressure steam in an autoclave. Then the tiles and slabs, after applying the dye to the glazed surfaces, are examined for the presence of cracks in the glaze.
“Late craquelure” occurs under the influence of the external environment during operation. The reasons for its appearance are: thermal shock, insufficient drying of the cement base, excessive cement content in the layer, excessive thickness of the mortar layer.
Glazed tiles with an "immediate crackle effect" are not considered defective, although manufacturers sometimes deliberately create collections of tiles with a "craquelure effect" for aesthetic purposes.
When craquelure appears on polished ceramic tiles and slabs, the term "polished craquelure" is used.
This defect can appear immediately after the end of the production cycle (in this case they speak of “immediate craquelure”) or some time after laying the tiles (in this case they speak of “late craquelure”).
The material on this issue is presented in the article “ Resistance to craquelure ” and “ Cracking of craquelure glaze ”.
Thermal conductivity is the ability of material bodies to transfer energy (heat exchange) from more heated parts of the body to less heated parts of the body, carried out by chaotically moving particles of the body (atoms, molecules, electrons, etc.). Such heat exchange can occur in any body with a non-uniform temperature distribution, but the mechanism of heat transfer will depend on the state of aggregation of the substance. Porcelain stoneware, due to its dense, almost non-porous structure, is distinguished by relatively high thermal conductivity.
The thermal conductivity of ceramic tiles usually varies from 0.5 to 1.1 W/(m °C); lower values apply to porous materials (single and double fired tiles, monoporosity).
The thermal conductivity of ceramic tiles usually varies from 0.5 to 0.9 kcal/(m h °C); lower values apply to porous materials (single and double fired tiles, monoporosity).
Porcelain stoneware, due to its dense, almost non-porous structure, has a relatively high thermal conductivity, which is higher than that of some other flooring materials (for example, natural stones such as marble or granite).
The method for determining the thermal conductivity of ceramic tiles is given in ISO 10545-03. The essence of the method is that in steady state, the energy flux density transmitted through thermal conductivity is proportional to the temperature gradient.
The SI unit for thermal conductivity is W/(m K).
The thermal conductivity of the flooring material becomes particularly important when the choice is made in favor of heated floors (warm screed). Here, naturally, porcelain stoneware with its high thermal conductivity has no competitors.
Information on this issue is presented in the article Thermal conductivity .