Abrasion resistance is a mechanical characteristic of a lined surface. Indicates the surface’s resistance to wear due to exposure to rubbing objects, surfaces, and materials. Which expressions do you think are correct?
According to the test method EN ISO 10545-7:1998, glazed tiles are divided into wear resistance classes, from "0" to "5". Where fifth class tiles are least resistant to abrasion.
The wear resistance requirements for unglazed ceramic tiles and slabs are set by EN 14411 and depend on water absorption and the method of their manufacture.
Abrasion resistance is a property characteristic only of glazed ceramic tiles. Since intense and prolonged exposure to the surface over time can lead to partial loss of the glazed layer, and this, in turn, will lead to exposure of the ceramic mass and, as a consequence, to the loss of not only the aesthetic, but also the functional qualities of the facing surface. Damage to unglazed tiles is almost invisible, since abrasion of the top layer leads to exposure of the ceramic mass, which in unglazed tiles is no different from the top layer.
Abrasion resistance also affects other functional characteristics of the ceramic tile surface, such as chemical and stain resistance and ease of maintenance. Naturally, this aspect is equally important for glazed and unglazed tiles, because... abrasion leads to a weakening of the tile structure itself, the appearance of pores and microcracks invisible to the naked eye, into which dirt, etc. gets clogged.
The important point is that unlike other quality tests on tiles, durability testing does not determine the value of the tile. The results of the study divide the tiles into classes, each of which corresponds to a specific purpose of the tile, and in no way to divide the tiles into “bad” and “good”.
Information on this issue is presented in the article Abrasion resistance, wear resistance .
The quality and value of the cladding directly depend on the symmetry and uniformity of its individual components, i.e. individual tiles in relation to the quality of the surface and its dimensions. That is why, any dimensional differences and asymmetries of the tiles, deviations of the surface from flatness, which violate the harmony of the cladding and worsen its appearance, will be considered defects. The quality of the surface is determined by the presence of the following defects: gaps, cracks, lack of glaze, unevenness, depressions, pits, damage to the vitrified surface, specks and stains, body defects, decorative defects, darkening, chipped edges and corners.
If defective tiles do not exceed 5%, then the batch is assigned FIRST GRADE, and if they exceed 5%, then the batch is assigned SECOND GRADE.
The method for controlling size and appearance characteristics is described in EN ISO 10545-2. To control the appearance, a minimum of 30 samples of tiles are selected, which must form a surface area of at least 1 m². The appearance of the tiles is checked visually (with the naked eye) at an illumination of 300 lux from a distance of 1 m from the observer’s eyes. According to the standard, preparation of the sample surface and visual assessment of the surface are carried out by different persons. Surface quality is expressed as a percentage of the number of tiles without defects.
The appearance characteristics, as well as the dimensional characteristics, are checked randomly on the tiles before they are packaged. Control is carried out visually by specially trained personnel (MANUAL SORTING) or by machine (AUTOMATIC SORTING).
The following type characteristics are important: length of the sides and thickness, straightness of the sides, orthogonality, flatness of the surface.
The difference in size and dimensional deviations are expressed as a percentage of the working size of the tile.
Information on this issue is presented in the article Dimensional and type characteristics .
Bending strength is an important mechanical property of ceramic tiles, according to which its quality is controlled. In this case, the resistance of the material is measured in relation to the maximum specific load, with constantly increasing pressure on the surface. Flexural strength is measured in Newtons per square millimeter (N/mm2). In order to fully appreciate the significance of this tile property and correctly apply the test results, you must first check your own understanding of this issue. Please indicate the correct conclusions in your opinion:
The tensile strength of the tile, measured in accordance with the standards, in fact, as a rule, is inferior to the real load-bearing capacity of the tile as part of a multilayer structure, i.e. after installation.
Flexural strength is a property of the material, not the tile. This indicator is used to measure the internal cohesive properties of the material that form the tile, rather than to measure a specific mechanical characteristic of the tile itself. In other words, if we take two tiles from the same material, but of different shapes and sizes, for example, one tile is twice as thick as the other, their bending strength will be the same, although the tensile strength will be different. Thus, the characteristics of the tiles differ, despite the fact that they have the same flexural strength.
The bending strength is determined by an equation that includes such variables as: breaking force, distance between support rods, width of the tested sample and the smallest thickness of the tested samples along the fracture line.
Bending strength is an indicator that does not require additional calculations. It is measured in KG (maximum load leading to destruction of the sample), per surface area (in mm2) to which the force was applied.
Flexural strength is a characteristic that determines the load-bearing capacity of a tile. In addition to the density of the material, it is also affected by the linear dimensions of the tile: length, width and thickness. So, for example, if one tile is twice as thick as another, and they are made of the same material, then its bending strength will be twice as high.
In the applied aspect, the tensile strength of the tile, measured in accordance with the standards, is somewhat overestimated relative to the real load-bearing capacity of the tile as part of a multilayer structure, i.e. after installation. This is due to an increase in the area under pressure.
Material on this issue is presented in the article Flexural strength .
The surface hardness of ceramic tiles is the ability of the cladding surface to withstand the mechanical stress of other materials. For ceramic facing materials or natural stones, this property is usually indicated in accordance with the mineralogical scale of hardness, the so-called Mohs scale, named after the German mineralogist Friedrich Mohs, who proposed his test method in 1811. Please indicate the correct statements in your opinion.
Glazed ceramic tiles are relatively hard, and scratches affect the aesthetic properties of the cladding, while also damaging its functional qualities.
Unglazed ceramic tiles are relatively hard, and scratches only affect the aesthetic properties of the cladding, without damaging its functional qualities.
The Mohs scale is a method of rough comparative assessment of the hardness of materials according to the “harder - softer” system, where the material being tested is scratched by a reference mineral and its surface hardness on the Mohs scale is lower, or it is scratched by a reference mineral and its hardness is higher. Thus, the values of the Mohs scale can be considered indicators of the absolute hardness of minerals.
The Mohs scale (mineralogical hardness scale) is a set of reference minerals for determining relative hardness using the scratching method. 10 minerals, arranged in order of increasing hardness, were taken as standards.
Mohs scale - determined by which of ten standard minerals scratches the material being tested, and which of ten standard minerals scratches the material being tested.
Material on this issue is presented in the article Surface hardness .
Slip resistance is determined by the kinetic and dynamic conditions of motion of the body interacting with the surface. When it comes to flooring, it is obvious how the degree of slip is related to the safety of using the surface. Knowledge of surface properties is essential for the cladding designer, tiler, retailer and end user, as well as the safety inspector. Please mark the correct conclusions in your opinion:
According to the DIN 51097 method, in rooms where floors are often wet and where people walk on them barefoot (for example, swimming pool sides, children's pools, common shower rooms, saunas, etc.), the classification contains groups: A; B (A+B); C (A+B+C). Where A is the slipperiest tile.
The DIN 51130 and DIN 51097 methods, also called "incline plane methods", consist of a person walking back and forth on a platform covered with the tiles being tested. The inclination of the test section increases at a constant rate until an angle is reached at which the person begins to feel unsure when walking, that is, begins to slide.
Friction coefficient is a parameter characterizing the degree of surface sliding. It is proportional to the force parallel to the interaction surface that must be applied in order to create relative motion between two bodies. The higher its characteristics such as smoothness and shine, the lower the coefficient of friction for floor surfaces, since this contributes to the appearance of a thin, continuous layer of water (as well as grease, dirt, etc.), which acts as a lubricant between the sole and the floor. Ceramic tiles, while smooth and shiny, create a slippery surface and increase the risk of falls and accidents.
According to the DIN 51130 method, floors in production facilities or work areas where there is a high risk of slipping are classified into the following groups (according to the average inclination angle): NC; R9; R10; R11; R12; R13. Where R13 is the slipperiest tile.
Ceramic tiles, characterized by their smoothness and shine, form the most intimate contact between the surface and the sole, thereby increasing the coefficient of friction. While rough, uneven surfaces tend to allow water or other liquids to accumulate on them, as well as dirt, grease and other substances that act as lubricants. In addition, the area of contact with the sole, in this case, is limited by the protruding edges of the surface, which also reduces slip resistance. This factor must be taken into account when choosing tiles.
Material on this issue is presented in the article Slip resistance on dry and wet surfaces .